Demountable and reusable composite floor systems

Mark Lawson
Principles of demountable composite beams

- Shear connectors can be disconnected from the beams and the steel beams are reused
- Composite slab may be cut into segments, demounted and reused in the same sequence as in the original design
- Shear connectors are more flexible than welded shear connectors
- Long span secondary beams are more efficient and the shear connector arrangement may be varied to optimise performance
- Primary beams may be designed as non-composite to facilitate demounting of the slab
Types of shear connector - bolted

- 20mm dia. bolts have nuts above and below the flange
- Shear connectors may have threaded ends
- Close fit holes (21mm diameter)
Types of shear connector - coupler

- Bolts are fixed above and below to couplers
- Coupler is left cast into slab
- Close fit holes
Types of shear connector - friction

- Cylinders are cast in the slab
- Friction grip bolts are used
- Normal clearance holes
Ways of re-using the composite slab

- Use a full depth edge trim along the beams
- Partial depth edge trim to form a pre-determined cut line through the mesh reinforcement
- In demounting, make a transverse cut through the topping
- Slab segments should be suitable for lifting and transportation – 2.7m width x 3 to 4m span is proposed
- Slab segments are re-used by grout filling the cut lines (see later presentation by Prof Lam)
Typical push test results

Load (kN) vs. Slip (mm)

- $k_{sc,ini} = 28.7$ kN/mm
- $P_{d,6mm}$
- $k_{sc,sec} = 20.9$ kN/mm
- $P_{d,2mm}$
Tests on composite beams

- Shear connector tests at Univ. Bradford and Univ. Luxembourg
- Composite beam tests at TU Delft and Univ. Luxembourg
- Cellular beam test with bolted shear connectors at Univ. Bradford
- Assembly, demounting and re-assembly of composite car park structure at TU Delft
Test on composite cellular beam -11.2m span
Details of cellular beam test

- Cellular beam is composed of:
 - 305x 165 x 46 kg/m top Tee
 - 305x 305 x 97 kg/m bottom Tee
 - Asymmetry of 2.4:1

- Beam dimensions
 - Span of 11.2m
 - Slab width of 2.8m (= L/4)
 - Beam depth of 427mm (L/h = 26)
 - Slab depth of 150mm (using 80mm decking)
Cellular beam section

305x165 x 46 kg/m UB top Tee

305x305 x 97 kg/m UC bottom Tee
Beam details with edge trim to form cut lines for demounting
Cellular beam test at failure
Cellular beam load-deflection curve
Cellular beam – bolted shear connector slip

Graph showing the relationship between total load (kN) and slip at the 2nd bolt from the beam end (mm). The graph indicates a significant increase in slip at around 700 kN, followed by a decrease as the load decreases.
Cellular beam test – key results

- Failure load is 24.1 kN/m² plus self-weight of 3 kN/m²
- Deflection at 5 kN/m² = 16mm (=L/700)
- End-slip at failure = 6 to 8mm
- Degree of shear connection was 38% (for 70 kN shear connector resistance) < 84% to Eurocode 4 for 2.4:1 asymmetry
- Failure mode by yielding of the bottom Tee in tension
- Evidence of web-post yielding in shear between the openings
Cellular beam test at failure
Summary of cellular beam test results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test</th>
<th>Theory</th>
<th>Ratio</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bending resistance</td>
<td>1190 kNm</td>
<td>1073 kNm</td>
<td>1.11</td>
<td>Based on shear connector resistance of 70 kN and steel mill certs.</td>
</tr>
<tr>
<td>Pure vertical shear resistance</td>
<td>425 kN at support 318 kN at first cell</td>
<td>340 kN at cell 3</td>
<td>0.93</td>
<td></td>
</tr>
<tr>
<td>Vierendeel bending resistance</td>
<td></td>
<td>318 kN</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Web-post shear or buckling resistance</td>
<td>Horizontal shear= 257 kN at web-post 3/4</td>
<td>229 kN-shear 275 kN-buckling</td>
<td>1.12</td>
<td>Horizontal shear failure of the top web controls</td>
</tr>
<tr>
<td>Deflection under self-wt. of concrete</td>
<td>29.5mm wet and 28.3mm dry</td>
<td>28.3mm</td>
<td>1.0</td>
<td>Close using the bending stiffness at the opening</td>
</tr>
<tr>
<td>Deflection under 5 kN/m² imposed load</td>
<td>16.0mm</td>
<td>16.8mm</td>
<td>0.95</td>
<td>Theory is based on shear connector stiffness of 30 kN/mm</td>
</tr>
</tbody>
</table>
Design methods for demountable composite beams

- Plastic method to Eurocode 4 with modifications due to the load-slip relationship of the shear connectors
- Utilisation factor, UF < 0.9 to avoid permanent deformation in first cycle of use
- Minimum degree of shear connection taking account of UF
- Elastic method is used for serviceability to calculate deflections and end slip
- Elastic method may also be used at the ultimate limit state (as a lower bound for all cases and also for Class 3 or 4 sections)
Effective inertia of composite section

\[I_{\text{eff}} = I_s + \frac{I_c}{n} + \left(\frac{n A_s}{A_c} + \left(\frac{\pi}{L} \right)^2 E_s A_s \left(\frac{s_{sc}}{k_{sc}} \right) \right) \]

- \(k_{sc} = \) shear stiffness of shear connectors
 \(\approx 30 \text{ kN/mm} \) for bolted shear connectors
- \(s_{sc} = \) equivalent spacing of shear connectors
Load-slip distribution along beam
Elastic limits for demountable composite beams

- Stresses depend on un-propped or propped construction
- End slip at serviceability ≤ 1.2mm
- End slip at ultimate limit state ≤ 2mm, so that deformations are not permanent in the first use cycle
- Additional deflection due to the flexibility of the shear connectors is calculated
- Equivalent spacing of shear connectors is dependent on their distribution
Reuse of demountable composite beams

- Beam and slab are re-used
 - The composite slab is cut into segments and re-used in the same order on the same beam
 - The beams are re-used in the same configuration i.e. the building is moved

- Beam is re-used
 - The beam is disconnected from the slab
 - The slab is demolished
 - The beam can be re-used with a new slab
Reuse of composite slabs in demountable construction

Composite slabs and steel beams with bolted shear connectors

- IPE or UB steel beams
- Cellular beams of asymmetric section

Second cycle of use

- Type 1 construction
 - Beams are salvaged and reused but the slab is not reused and demolished
 - New on-site concrete slab and new shear connectors
 - Welded shear connectors in second cycle of use

- Type 2a construction
 - Cement grout between the reused slab segments for compression transfer
 - Bolted shear connectors; further cycles of use are possible

- Type 2b construction
 - Additional concrete layer is placed on the slab segments for compression transfer
 - Additional design checks on composite beam for second cycle of use
Use of precast slabs in demountable composite construction
Conclusions on demountable composite construction

- Use long span composite construction to optimise performance and to minimise the components
- Demountable shear connectors have equivalent shear resistance to welded studs
- But they are more flexible, and so deflection calculations should include this effect
- Utilisation in first use, $UF \leq 0.9$ to avoid permanent deformation
- Minimise the degree of shear connection for most economic use
- Elastic design may be used with optimised shear connector distribution for both Serviceability and Ultimate limit states
SCI is the leading, independent provider of technical expertise and disseminator of best practice to the steel construction sector. We work in partnership with clients, members and industry peers to help build businesses and provide competitive advantage through the commercial application of our knowledge. We are committed to offering and promoting sustainable and environmentally responsible solutions.