Demountable Precast Concrete Systems

Prof. Dr.-Ing. Christoph ODENBREIT
András KOZMA, M.Sc

ArcelorMittal Chair of Steel Construction, University of Luxembourg, Luxembourg

Reuse of Steel Structures and the Circular Economy
8th October 2019, London
1. Introduction

2. Demountable Shear Connections

3. Laboratory Tests

4. Design Procedure

5. Conclusions
Aspects of Design for Deconstruction (DFD):

- Use demountable mechanical connections and dry joints
- Use modular design and a standard structural grid
- Use prefabrication
- Provide access to all parts, particularly connections
- Provide tolerances for assembly and disassembly
- Use a minimum number of connectors
- Design robustly to withstand repeated use
Modular design

- Planning grid: Multiple of the basic module (m)
- Basic module: m=1.5 m (UK) m=1.35 m (Continent)
- The size of all elements should respect the planning grid (beam, slab, spacing of connectors)

http://www.understandconstruction.com/steel-frame-structures.html
Modular design

- Planning grid: Multiple of the basic module (m)
- Basic module: m=1.5 m (UK) m=1.35 m (Continent)
- The size of all elements should respect the planning grid (beam, slab, spacing of connectors)

[Diagram of modular design]

http://www.understandconstruction.com/steel-frame-structures.html
Modular design

- Planning grid: Multiple of the basic module (m)
- Basic module: $m=1.5$ m (UK) $m=1.35$ m (Continent)
- The size of all elements should respect the planning grid (beam, slab, spacing of connectors)

http://www.understandconstruction.com/steel-frame-structures.html
Introduction
Example Module: 1.35 m

Avenue Leclerc office building
Boulogne-Billancourt, 2016
Architects: Grégoire Zündel, Irina Cristea
Introduction
Example Module: 1.35 m

Medienbrücke, München, 2012
Architect: Otto Steidle

Thyssenkrupp Headquarter,
Essen, 2010
JSWD Architekten, Chaix & Morel
et Associés
Introduction

Example Module: 1.35 m

ILB building, Potsdam, 2017
Architect: Jürgen Engel

Imtech building, München, 2014
Prasch buken partner architekten
Introduction

Example Module: 1.35 m

DHPG building,
Bonn, 2013
Schmitz Architekten

Deutsche Börse, Eschborn,
2010
Jürgen Engel
Introduction

Example Module: 1.35 m

1. Introduction

2. Demountable Shear Connections

3. Laboratory Tests

4. Design Procedure

5. Conclusions
Demountable Shear Connections

http://www.understandconstruction.com/steel-frame-structures.html
Demountable Shear Connections

Demountable Shear Connections

• High-strength bolted connections
• Prefabricated slab elements
• Oversized holes in the steel beam
• Pretension or epoxy resin injection
Demountable Shear Connections

- High-strength bolted connections
- Prefabricated slab elements
- Oversized holes in the steel beam
- Pretension or epoxy resin injection
1. Introduction

2. Demountable Shear Connections

3. Laboratory Tests

4. Design Procedure

5. Conclusions
Part 2: Laboratory Tests

Laboratory Tests

Push out tests

• Standard EC4 push-out tests
• 4 Prefabricated slabs
• HEB260 Beam
Laboratory Tests
Push out test results

Laboratory Tests
Push out test results

11/10/2019

Laboratory Tests
Push out test results
Summary (Push-out Behaviour)

- Bolt shear failure
- Higher strength
- Lower stiffness
- Sufficient deformation capacity (>6 mm)
- Non-ductile behaviour
- Demountable
- Reusable
• 2 full-scale beam tests on 6.3 m beams
• IPE 360
• 2 Prefabricated slabs
• 2 full-scale beam tests on 6.3 m beams
• IPE 360
• 2 Prefabricated slabs
Beam test results

1. Introduction
2. Demountable Shear Connections
3. Laboratory Tests
4. Design Procedure
5. Conclusions
Serviceability Limit State

1. Check the deflection

\[\delta = \frac{5}{384} \cdot \frac{qL^4}{EI_{y,eff}} \leq \frac{L}{250} \]

Second moment of area:
Rigid connection:
\[I_{y,eff} = I_{y,a} + I_{y,c} \cdot \frac{A_c A_a}{A_c + n A_a} \cdot a^2 \]
Flexible connection:
\[I_{y,eff} = I_{y,a} + I_{y,c} \cdot \frac{A_c}{n} + \frac{A_c}{n A_s} + \left(\frac{E_a}{k_{sc} / s_{sc,eq}} \right) \left(\frac{n}{L} \right)^2 \left(\frac{A_c}{n} \right) \cdot a^2 \]

\[k_{sc} : \] Shear connection stiffness (from test)
\[s_{sc,eq} : \] Equivalent spacing

EN1994-1-1, Annex A.3

(3) The stiffness of the shear connector, \(k_{sc} \), may be taken as \(0.7 P_{Rk} / s \), where:
- \(P_{Rk} \) is the characteristic resistance of the shear connector;
- \(s \) is the slip, determined from push tests in accordance with Annex B, at a load of \(0.7 P_{Rk} \).
Serviceability Limit State

2. Check occurring end slip

\[\bar{s} = M \frac{S_k}{I_{y,eff}} \frac{s_{sc,eq} \pi}{k_{sc} L} \leq \frac{0.7 P_{Rk}}{k_{sc}} \]

\[S_k = \frac{a}{E_a} \left(\frac{\left(\frac{k_{sc}}{s_{sc,eq}} \right) \left(\frac{L}{\pi} \right)}{A_c + n A_a} + A_c A_a \right) \]
Ultimate Limit State

Non-ductile behaviour

EC4 does not allow equidistant spacing → Standardisation and modular design?

Substitute the load-slip behaviour with and equivalent ductile headed stud shear connection.

Introduction of a reduction factor k_{flex}:

$$P_{\text{R,eff}} = k_{\text{flex}} \cdot P_{@6\text{mm}}$$

Definition of k_{flex} based on the shape of the load-slip curve and the slip distribution.

This way, $P_{\text{R,eff}}$ can be used for EC4 like P_{Rd}.

$k_{\text{flex}} \approx 0.76 - 0.80$
1. Introduction
2. Demountable Shear Connections
3. Laboratory Tests
4. Design Procedure
5. Conclusions
Conclusions

- The developed systems are suitable for demountable composite beams.

- The tests showed, that the damage occurs in the replaceable elements.

- With the developed equations, **Eurocode 4 standard design procedure remains applicable.**

- In addition, the slip must be controlled at SLS. (Equations are given.)