Design of new single-storey steel buildings for reuse

Ricardo Pimentel

08/10/2019
Why focus on single-storey steel buildings?

Design of new single-storey steel buildings for reuse

FIGURES CREDITS: World Steel Association, European Steel Association, Primary Interviews, Grand View Research; SCI
Key concepts for steel reuse

- **Standardization**
- Reduce number of interfaces (number of building layers)
- Reduce number of different components
- Design for adaptability and relocation
- Design and detailing for construction, deconstruction and transportation
Standardization

- Structural grid
- Roof pitch
- Structural solution
- Connections
- Assemblies size (for transportation)
Reduce interfaces

• Avoid secondary structure (if possible)

 Roof cassette systems as an option

FIGURES CREDITS: https://www.ruukki.com; http://www.afaconsult.com;
Reduce number of different components and materials

- Fewer robust members
- Reduce number of different cross-sections
- Reduce number of materials (steel-grades, subgrades)

FIGURES CREDITS: https://www.steelconstruction.info
Design for adaptability and relocation

- **Environmental loads: snow**

<table>
<thead>
<tr>
<th>Country</th>
<th>$s_k \text{ (kN/m}^2\text{)}$</th>
<th>Country average</th>
<th>Min. European value</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.(^a))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finland</td>
<td>2.00</td>
<td>2.75</td>
<td>2.00</td>
<td>S1</td>
</tr>
<tr>
<td>France</td>
<td>0.45</td>
<td>0.65</td>
<td>0.70</td>
<td>S3</td>
</tr>
<tr>
<td>Germany</td>
<td>0.45</td>
<td>0.85</td>
<td>1.00</td>
<td>S2</td>
</tr>
<tr>
<td>Ireland</td>
<td>0.40</td>
<td>0.55</td>
<td>0.70</td>
<td>S3</td>
</tr>
<tr>
<td>Italy</td>
<td>0.60</td>
<td>1.00</td>
<td>1.00</td>
<td>S2</td>
</tr>
<tr>
<td>The Netherlands</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>S3</td>
</tr>
<tr>
<td>Norway</td>
<td>1.50</td>
<td>3.50</td>
<td>2.00</td>
<td>S1</td>
</tr>
<tr>
<td>Portugal</td>
<td>0.10</td>
<td>0.30</td>
<td>0.40</td>
<td>S4</td>
</tr>
<tr>
<td>Romania</td>
<td>1.50</td>
<td>2.00</td>
<td>2.00</td>
<td>S1</td>
</tr>
<tr>
<td>Spain</td>
<td>0.30</td>
<td>0.40</td>
<td>0.40</td>
<td>S4</td>
</tr>
<tr>
<td>Sweden</td>
<td>1.50</td>
<td>2.50</td>
<td>2.00</td>
<td>S1</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>0.45</td>
<td>0.65</td>
<td>0.70</td>
<td>S3</td>
</tr>
</tbody>
</table>

\(^a\) Assuming the average altitude for the less critical zone of the country

\(^b\) Assuming the average altitude for the zone representing most area of the country

European snow load classes

FIGURES CREDITS: Progress
Design for adaptability and relocation

- **Environmental loads: wind**

<table>
<thead>
<tr>
<th>Country</th>
<th>$V_{b,0,min}$ [m/s]</th>
<th>$V_{b,0,max}$ [m/s]</th>
<th>$V_{b,0,mean}$ [m/s]</th>
<th>Class - Mean</th>
<th>$V_{b,0,class}$ [m/s]</th>
<th>$q_{b,0,class}$ [kN/m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>17.6</td>
<td>28.3</td>
<td>21</td>
<td>W4</td>
<td>23</td>
<td>0.55</td>
</tr>
<tr>
<td>Belarus</td>
<td>22.0</td>
<td>24.0</td>
<td>22</td>
<td>W4</td>
<td>23</td>
<td>0.61</td>
</tr>
<tr>
<td>Belgium</td>
<td>23.0</td>
<td>26.0</td>
<td>24</td>
<td>W3</td>
<td>26</td>
<td>0.72</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>24.0</td>
<td>35.8</td>
<td>27</td>
<td>W2</td>
<td>28</td>
<td>0.91</td>
</tr>
<tr>
<td>Croatia</td>
<td>20.0</td>
<td>48.0</td>
<td>29</td>
<td>W1</td>
<td>> 28</td>
<td>1.05</td>
</tr>
<tr>
<td>Cyprus</td>
<td>24.0</td>
<td>40.0</td>
<td>29</td>
<td>W1</td>
<td>> 28</td>
<td>1.05</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>22.5</td>
<td>36.0</td>
<td>27</td>
<td>W2</td>
<td>28</td>
<td>0.91</td>
</tr>
<tr>
<td>Denmark</td>
<td>24.0</td>
<td>27.0</td>
<td>25</td>
<td>W3</td>
<td>26</td>
<td>0.78</td>
</tr>
<tr>
<td>Estonia</td>
<td>21.0</td>
<td>21.0</td>
<td>21</td>
<td>W4</td>
<td>23</td>
<td>0.55</td>
</tr>
<tr>
<td>Finland</td>
<td>21.0</td>
<td>26.0</td>
<td>22*</td>
<td>W4</td>
<td>23</td>
<td>0.61</td>
</tr>
<tr>
<td>France</td>
<td>22.0</td>
<td>28.0</td>
<td>24*</td>
<td>W3</td>
<td>26</td>
<td>0.72</td>
</tr>
<tr>
<td>Germany</td>
<td>22.5</td>
<td>30.0</td>
<td>25*</td>
<td>W3</td>
<td>26</td>
<td>0.78</td>
</tr>
<tr>
<td>Greece</td>
<td>27.0</td>
<td>33.0</td>
<td>29</td>
<td>W1</td>
<td>> 28</td>
<td>1.05</td>
</tr>
<tr>
<td>Hungary</td>
<td>23.6</td>
<td>23.6</td>
<td>23</td>
<td>W4</td>
<td>23</td>
<td>0.66</td>
</tr>
<tr>
<td>Iceland</td>
<td>36.0</td>
<td>36.0</td>
<td>36</td>
<td>W1</td>
<td>> 28</td>
<td>1.62</td>
</tr>
<tr>
<td>Ireland</td>
<td>25.0</td>
<td>28.0</td>
<td>26</td>
<td>W3</td>
<td>26</td>
<td>0.85</td>
</tr>
<tr>
<td>Italy</td>
<td>25.0</td>
<td>31.0</td>
<td>27*</td>
<td>W2</td>
<td>28</td>
<td>0.91</td>
</tr>
<tr>
<td>Latvia</td>
<td>21.0</td>
<td>27.0</td>
<td>23</td>
<td>W4</td>
<td>23</td>
<td>0.66</td>
</tr>
<tr>
<td>Lithuania</td>
<td>24.0</td>
<td>32.0</td>
<td>26</td>
<td>W3</td>
<td>26</td>
<td>0.85</td>
</tr>
<tr>
<td>Luxemburg</td>
<td>24.0</td>
<td>24.0</td>
<td>24</td>
<td>W3</td>
<td>26</td>
<td>0.72</td>
</tr>
<tr>
<td>Netherlands</td>
<td>24.5</td>
<td>29.5</td>
<td>27*</td>
<td>W2</td>
<td>28</td>
<td>0.91</td>
</tr>
<tr>
<td>Norway</td>
<td>22.0</td>
<td>31.0</td>
<td>25</td>
<td>W3</td>
<td>26</td>
<td>0.78</td>
</tr>
<tr>
<td>Poland</td>
<td>22.0</td>
<td>26.0</td>
<td>23</td>
<td>W4</td>
<td>23</td>
<td>0.66</td>
</tr>
<tr>
<td>Portugal</td>
<td>27.0</td>
<td>30.0</td>
<td>27*</td>
<td>W2</td>
<td>28</td>
<td>0.91</td>
</tr>
<tr>
<td>Romania</td>
<td>27.0</td>
<td>35.0</td>
<td>31*</td>
<td>W1</td>
<td>> 28</td>
<td>1.20</td>
</tr>
<tr>
<td>Russia</td>
<td>19.5</td>
<td>43.6</td>
<td>27</td>
<td>W2</td>
<td>28</td>
<td>0.91</td>
</tr>
<tr>
<td>Slovakia</td>
<td>24.0</td>
<td>20.0</td>
<td>24</td>
<td>W3</td>
<td>26</td>
<td>0.72</td>
</tr>
<tr>
<td>Slovenia</td>
<td>20.0</td>
<td>30.0</td>
<td>23</td>
<td>W4</td>
<td>23</td>
<td>0.66</td>
</tr>
<tr>
<td>Spain</td>
<td>26.0</td>
<td>29.0</td>
<td>27*</td>
<td>W2</td>
<td>28</td>
<td>0.91</td>
</tr>
<tr>
<td>Sweden</td>
<td>21.0</td>
<td>26.0</td>
<td>22</td>
<td>W4</td>
<td>23</td>
<td>0.61</td>
</tr>
<tr>
<td>Switzerland</td>
<td>20.0</td>
<td>24.0</td>
<td>21</td>
<td>W4</td>
<td>23</td>
<td>0.55</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>22.0</td>
<td>32.0</td>
<td>25*</td>
<td>W3</td>
<td>26</td>
<td>0.78</td>
</tr>
</tbody>
</table>

* - According to the most usual value defined with the national annex. Other results obtained with a weighted average: $(2*V_{b,0,min} + V_{b,0,max})/3$. Class W1: 23 m/s; Class W2: 26 m/s; Class W3: 28 m/s; Class W4: >28 m/s

European wind load classes
Design for adaptability and relocation

- Environmental loads: country and European load classes:
 - Define load for building locale (essentially wind and snow)
 - Compare with recommended minimum for the country
 - Compare with recommended minimum for the European class
 - Adapt design for recommended minimums country or EC loads (if economically feasible)

UF (unity factors) in practice are defined based on standard section sizes;
Spare capacity may be available;

CREDITS: Progress
Design for adaptability and relocation

- The design process:
 1. Design for allowable permanent load \((UF=1)\);
 2. Design for allowable wind load \((UF=1)\);
 3. Design for allowable snow load \((UF=1)\);

Designers may want to specify on the project documentation allowable permanent and imposed loads that lead to \(UF=1\).

Extra efforts in the design process, but more flexibility for future reuse!
Design and detailing for deconstruction and reuse

- Design according to Eurocode 3:
 - Elastic global analysis is recommended
 - SLS stress checks to be performed
 - \(\gamma_{M1,mod} = 1.15 \times \gamma_{M1} \)
 - \(\gamma_{M0} \) and \(\gamma_{M2} \): values from the appropriate NA to be used;

Reliability adjustment to cover uncertainty for different building life cycles for transportation, erection and disassembly (\(\beta = 4.3 \) for member stability). Subsequent life cycles based on visual inspection for member straightness and other geometric tolerances.
Design for adaptability and relocation

- Use reasonable loads for claddings and floor systems to allow for future adaptability based on two classes:
 - Lightweight flooring solutions (SW: 1 kN/m²);
 - Heavy flooring solutions (SW: 3 kN/m²) – clever detailing for disassembly may be needed;

Figures Credits: Progress
Design and detailing for deconstruction and reuse

- Detailing principles for reuse:
 - Reduce the number of connections and connectors (simple connections)
 - Use bolts or screws instead of other solutions; reduce welding
 - Detail for easy access of connections
 - Repetitive detailing (modular/standard)
 - Avoid permanent attachments (floors are critical)

CREDITS: Progress; SCI
Design and detailing for deconstruction and reuse

- **Detailing principles for reuse: semi-bolted haunch**

![Diagram](image)

- End plate welded to each profile segment
- Haunch length, typically span/10

Figure Credits: Progress; SCI
Design and detailing for deconstruction and reuse

- Detailing principles for reuse: full bolted haunch

![Diagram of full bolted haunch detail]

FIGURE CREDITS: Progress; SCI
Design and detailing for deconstruction and reuse

- Detailing principles for reuse: full bolted connections.

FIGURES CREDITS: https://www.northlincsstructures.com/
Design and detailing for deconstruction and reuse

- Detailing principles for reuse: full bolted connections

FIGURES CREDITS: https://www.northlincesstructures.com/
Design and detailing for deconstruction and reuse

- Detailing principles for reuse: full bolted connections

FIGURES CREDITS: https://www.northlincsstructures.com/
Design and detailing for deconstruction and reuse

- Detailing principles for reuse: modular truss system
Design and detailing for deconstruction and reuse

- **Detailing principles for reuse:**

 - Use of simple connections.
 - More suitable for small to medium spans.

 - Modular design concepts:
 - Use of bespoke welded standard components.
 - Repetitive detailing for a specific span and frame spacing.
 - Standard connections with standard bolt arrangements.
 - More suitable for small to medium spans.

FIGURES CREDITS: Progress; SCI
Design and detailing for deconstruction and reuse

- Detailing principles for reuse: mezzanines

FIGURES CREDITS: Progress; www.Steelconstruction.info; Fokker 7 Building - Schiphol Airport (right)

Design of new single-storey steel buildings for reuse

Demountable!
Design and detailing for deconstruction and reuse

- Detailing principles for reuse: mezzanines

 Bespoke SPS system

FIGURES CREDITS: https://www.spstechnology.com/
Design and detailing for deconstruction and reuse

- Detailing principles for reuse: mezzanines

 CLT floor system

FIGURES CREDITS: https://www.kloecknermetalsuk.com

Demountable!
Design and detailing for deconstruction and reuse

- Detailing principles for reuse: mezzanines

Demountable composite floor system

Welded shear studs vs Bolts

FIGURES CREDITS: REDUCE: Research Fund for Coal and Steel, Grant agreement No: 710040; Figure on the left: https://www.tatasteelconstruction.com

Design of new single-storey steel buildings for reuse
Design and detailing for deconstruction and reuse

- Detailing principles for reuse: bespoke connections

FIGURES CREDITS: SCI
Design and detailing for deconstruction and reuse

- Detailing principles for reuse: bespoke connections

FIGURES CREDITS: http://www.lindapter.com
Design and detailing for deconstruction and reuse

- Detailing principles for reuse: case study

100% circular design; design for deconstruction and reuse; all structural members were designed to be disassembled; cladding with screwing fixings; BIM and Material Passport to enhance future reuse.

FIGURES CREDITS: Fokker 7 Building; Schiphol Airport
Design and detailing for deconstruction and reuse

- Detailing principles for reuse: case study

100% circular design; design for deconstruction and reuse; all structural members were designed to be disassembled; cladding with screwing fixings; BIM and Material Passport to enhance future reuse.

FIGURES CREDITS: Fokker 7 Building; Schiphol Airport
Final remarks

1. Small improvements to current practice for single storey buildings will have a large impact on the construction market (due to high market share);

2. Design for deconstruction, not only construction;

3. Reduce number or layers, materials and components;

4. Design for relocation/adaptability, not for a single purpose and location;

5. Designers to specify allowable structural capacity to facilitate reuse;
SCI is the leading, independent provider of technical expertise and disseminator of best practice to the steel construction sector. We work in partnership with clients, members and industry peers to help build businesses and provide competitive advantage through the commercial application of our knowledge. We are committed to offering and promoting sustainable and environmentally responsible solutions.