| ㄱ Tekla.Tedds <br> Steel Construction Institute | Project |  |  |  | Job no. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Calcs for |  |  |  | Start page no./Revision 1 |  |
|  | Calcs by TT | Calcs date 24/01/2024 | Checked by | Checked date | Approved by | Approved date |

## SCI TEDDS MODULES



SCI - Resistance of Composite Slabs to Concentrated Loads implements a new calculation procedure produced by SCI (and published in SCI Advisory Desk notes AD 450 \& AD 477), which calculates the reinforcement required in a composite slab subject to one or more concentrated loads. The procedure allows for optimisation of the effective widths of the slab assumed to support the concentrated load, finding the best compromise between longitudinal and transverse requirements. The process may also be used to justify existing transverse reinforcement provision when an 'unexpected' load, such as that from a MEWP or similar vehicle, is applied.

## CALCULATION DETAILS

Calculation Version: 1.0.00

Project Name:
Client:
Project Reference:
Location:

Demo
SCI Tedds Modules
Sample
Sample Floor

Design Standard:
Analysis Date \& Time:
Prepared By:
Checked By:

Eurocode
24/01/2024-10:34
ABC
DEF

SUMMARY OF RESULTS

| Longitudinal Bending <br> Moment Check <br> $\left(M_{R d}>M_{\mathrm{Ed}}\right)$ | Vertical Shear Check <br> $\left(\mathrm{V}_{\mathrm{Rd}}>\mathrm{V}_{\mathrm{Ed}}\right) ;$ | Transverse Bending <br> Moment Check <br> $\left(\mathrm{M}_{\mathrm{t}, \mathrm{Rd}}>\mathrm{M}_{\mathrm{t}, \mathrm{Ed}}\right) ;$ | Required Area of <br> Transverse <br> Reinforcement <br> $\left(A_{\mathrm{s}, \mathrm{treq}}\right) ;$ |
| :---: | :---: | :---: | :---: |
| Pass | Pass; | Pass; | $\mathbf{2 0 7 \mathbf { ~ m m } ^ { 2 } / \mathbf { m } ;}$ |

## INPUT SUMMARY

## DEFAULT PARTIAL FACTORS

| Permanent Actions | $\gamma_{\mathrm{G}}=\mathbf{1 . 3 5}$ |
| :--- | :--- |
| Variable Actions | $\gamma_{\mathrm{Q}}=\mathbf{1 . 5 0}$ |
| Reduction Factor for Permanent Actions | $\xi=\mathbf{0 . 9 2 5}$ |
| Resistance of Cross-Sections | $\gamma_{\mathrm{MO}}=\mathbf{1 . 0 0}$ |
| Longitudinal Shear Resistance of a Composite Slab | $\gamma_{\mathrm{vs}}=\mathbf{1 . 2 5}$ |
| Concrete Material Strength | $\gamma_{\mathrm{C}}=\mathbf{1 . 5 0}$ |
| Reinforcing Steel Material Strength | $\gamma_{\mathrm{s}}=\mathbf{1 . 1 5}$ |

## OTHER DEFAULT FACTORS

| - Tekla.Tedds | Projet |  |  |  | Job no. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Steel Construction Institute | Calss for |  |  |  | Start page no./Revision2 |  |
|  |  |  | Checked by | Checked date | Approved by | Approved |
|  | TT | 2401/2024 |  |  |  |  |

Coefficient for Long Term Effects on Concrete
Weight Increase Factor for Rebar Overlap
Stress Distribution Factor
$\alpha_{c c}=1.00$
$\mathrm{f}_{\text {overlap }}=1.15$
$\alpha=0.85$

## USER INPUTS

## Slab Geometry

Slab Span
Slab Width
Slab Depth
Screed Depth
Bearing Length at a Support

## Steel Decking Properties

## Thickness

Thickness of Galvanising Coating
Steel Strength
Profile Height
Elastic Neutral Axis Height
Plastic Neutral Axis Height
Trough Pitch
Soffit Width
Crest Width
Longitudinal Shear Strength
Area of Concrete
Gross Cross-Sectional Area
Effective Cross-Sectional Area
Deck Density
Sagging Bending Resistance

$$
\begin{aligned}
& \mathrm{L}=\mathbf{3 . 5 0 \mathrm { m }} \\
& \mathrm{L}_{\mathrm{t}}=10.00 \mathrm{~m} \\
& \mathrm{~h}=150 \mathrm{~mm} \\
& \mathrm{~h}_{\mathrm{f}}=0 \mathrm{~mm} \\
& \mathrm{~b}_{\text {sup }}=\mathbf{5 0} \mathrm{mm}
\end{aligned}
$$

$$
\mathrm{t}_{\mathrm{nom}}=0.90 \mathrm{~mm}
$$

$$
\mathrm{t}_{\mathrm{galv}}=0.040 \mathrm{~mm}
$$

$$
\mathrm{f}_{\mathrm{y}, \mathrm{k}, \mathrm{k}}=350 \mathrm{~N} / \mathrm{mm}^{2}
$$

$$
\mathrm{h}_{\mathrm{p}}=80 \mathrm{~mm}
$$

$$
\mathrm{e}=44 \mathrm{~mm}
$$

$$
e_{p}=31 \mathrm{~mm}
$$

$$
b_{s}=300 \mathrm{~mm}
$$

$$
b_{b}=120 \mathrm{~mm}
$$

$$
\mathrm{b}_{\mathrm{r}}=150 \mathrm{~mm}
$$

$$
\tau_{\mathrm{u}, \mathrm{Rk}}=0.1800 \mathrm{~N} / \mathrm{mm}^{2}
$$

$$
\mathrm{A}_{\mathrm{c}, \mathrm{prof}}=35595 \mathrm{~mm}^{2} / \mathrm{m}
$$

$$
A_{p, \text { gross }}=1259 \mathrm{~mm}^{2} / \mathrm{m}
$$

$$
A_{p, \text { eff }}=941 \mathrm{~mm}^{2} / \mathrm{m}
$$

$$
\rho_{\text {deck }}=79 \mathrm{kN} / \mathrm{m}^{3}
$$

$$
\mathrm{m}_{\mathrm{Rd}, \mathrm{~s}}=7 \mathrm{kNm} / \mathrm{m}
$$

Concrete Properties

Characteristic Cylinder Strength
Dry Density
$\mathrm{f}_{\mathrm{ck}}=\mathbf{2 5 N} / \mathrm{mm}^{2}$
$\rho_{\text {dry }}=24 \mathrm{kN} / \mathrm{m}^{3}$

## Mesh Reinforcement Properties

No. Layers
Mesh Bar Diameter
Mesh Area
Mesh Cover
Yield Strength
Density

$$
\begin{aligned}
& \text { mesh_layers }=1 \\
& \mathrm{~d}_{\text {mesh }}=8 \mathrm{~mm} \\
& \text { Ameshh,single }=\mathbf{2 5 2} \mathrm{mm}^{2} / \mathrm{m} \\
& \mathrm{C}_{\text {mesh }}=\mathbf{2 5 \mathrm { mm }} \\
& \mathrm{f}_{\mathrm{yk}, \text {,mesh }}=500 \mathrm{~N} / \mathrm{mm}^{2} \\
& \rho_{\text {mesh }}=\mathbf{7 9} \mathrm{kN} / \mathrm{m}^{3}
\end{aligned}
$$

| Tekla.Tedds <br> Steel Construction Institute | Project |  |  |  | Job no. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Calcs for |  |  |  | Start page no./Revision 3 |  |
|  | Calcs by TT | Calcs date $24 / 01 / 2024$ | Checked by | Checked date | Approved by | Approved date |

## Bar Reinforcement Properties

No. of Bars in Rib
Bar Diameter
Axis Distance from Soffit
Yield Strength
Density
bar no $=1$
$\mathrm{d}_{\mathrm{bar}}=6 \mathrm{~mm}$
$\mathrm{y}_{\mathrm{bar}}=30 \mathrm{~mm}$
$\mathrm{f}_{\mathrm{yk}, \text { bar }}=500 \mathrm{~N} / \mathrm{mm}^{2}$
$\rho_{\text {bar }}=79 \mathrm{kN} / \mathrm{m}^{3}$


LOAD INPUTS

Uniformly Distributed Load (UDL)
Services
$w_{\text {serv }}=0.50 \mathrm{kN} / \mathrm{m}^{2}$
Finishes
$W_{\text {finish }}=0.70 \mathrm{kN} / \mathrm{m}^{2}$
Screed
$W_{\text {screed }}=0.20 \mathrm{kN} / \mathrm{m}^{2}$
Imposed
$W_{\text {imp }}=1.00 \mathrm{kN} / \mathrm{m}^{2}$
Partitions
$w_{\text {part }}=0.50 \mathrm{kN} / \mathrm{m}^{2}$

Concentrated Loads Set

Loads A1 and A2
Magnitude of Load
Bearing Width
Bearing width

Loads B1 and B2
Magnitude of Load
Bearing Width
Bearing Width

Distance Between Loads
Distance A to B
Distance 1 to 2
$W_{A}=5.00 \mathrm{kN}$
$\mathrm{b}_{\mathrm{A}}=0.100 \mathrm{~m}$
$a_{A}=0.100 \mathrm{~m}$
$W_{B}=5.00 \mathrm{kN}$
$\mathrm{b}_{\mathrm{B}}=0.100 \mathrm{~m}$
$a_{\mathrm{B}}=0.100 \mathrm{~m}$
$\mathrm{d}_{\mathrm{AB}}=1.000 \mathrm{~m}$
$\mathrm{d}_{12}=\mathbf{0 . 6 0 0} \mathrm{m}$

## ANALYSIS RESULTS

| * Tekla Tedds | Project |  |  |  | Job no. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Steel Construction Institute | Calcs for |  |  |  | Start page no./Revision 4 |  |
|  | Calcs by TT | $\begin{aligned} & \hline \text { Calcs date } \\ & 24 / 01 / 2024 \end{aligned}$ | Checked by | Checked date | Approved by | Approved date |

## SECTION AND MATERIAL PROPERTIES

## Slab Geometry

Effective Span
$L_{\text {eff,comp }}=\operatorname{MIN}\left(L, L-2 \times b_{\text {sup }}+(h-e)\right)=3.50 m$

## Concrete Properties

Depth of Concrete Above Decking
Total Area of Concrete
Design Cylinder Strength
Concrete Self-Weight (Dry)
$h_{c}=h-h_{p}=70.0 \mathrm{~mm}$
$\mathrm{A}_{\mathrm{c}}=\mathrm{A}_{\mathrm{c}, \text { prof }}+\mathrm{h}_{\mathrm{c}}=105595.0 \mathrm{~mm}^{2} / \mathrm{m}$
$f_{c d}=\alpha_{c c} \times f_{c k} / \gamma_{c}=17 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{W}_{\text {conc, dry }}=\rho_{\text {ary }} \times \mathrm{A}_{\mathrm{c}}=2.53 \mathrm{kN} / \mathrm{m}^{2}$

## Mesh Reinforcement Properties

Design Yield Strength of Mesh
Cross-Sectional Area of Mesh
Distance from Transverse Reinforcement

Mesh Reinforcement Self-Weight

## Bar Reinforcement Properties

## Area of Single Bar

Cross-Sectional Area of Bars
Design Yield Strength of Bars
Bar Reinforcement Self-Weight

## Steel Decking Properties

Design Core Thickness
Design Steel Strength of Deck
Design Longitudinal Shear Strength
Design Sagging Bending Resistance
Elastic Neutral Axis of Deck and Bar
Decking Self-Weight
$f_{y d, \text { mesh }}=f_{y k, \text { mesh }} / \gamma_{\mathrm{s}}=435 \mathrm{~N} / \mathrm{mm}^{2}$
$A_{\text {mesh }}=$ mesh_layers $\times A_{\text {mesh,single }}=252.0 \mathrm{~mm}^{2} / \mathrm{m}$

Centreline to Top of Slab
$d_{\mathrm{s}}=\mathrm{c}_{\text {mesh }}+1.5 \times \mathrm{d}_{\text {mesh }}=\mathbf{3 7 . 0} \mathrm{mm}$
$\mathrm{w}_{\text {mesh }}=\mathrm{f}_{\text {overlap }} \times \rho_{\text {mesh }} \times 2 \times \mathrm{A}_{\text {mesh }}=0.05 \mathrm{kN} / \mathrm{m}^{2}$
$A_{\text {bar,single }}=(\mathrm{pi} / 4) \times \mathrm{dbar}^{2}=\mathbf{2 8} \mathrm{mm}^{2}$
$A_{\text {bar }}=$ bar_no $\times A_{\text {bar,single }} / b_{s}=94 \mathrm{~mm}^{2} / \mathrm{m}$
$\mathrm{f}_{\mathrm{yd}, \text { bar }}=\mathrm{f}_{\mathrm{yk}, \text { bar }} / \gamma_{\mathrm{s}}=435 \mathrm{~N} / \mathrm{mm}^{2}$
$w_{\text {bar }}=f_{\text {overlap }} \times \rho_{\text {bar }} \times A_{\text {bar }}=0.01 \mathrm{kN} / \mathrm{m}^{2}$
$\mathrm{t}=\mathrm{t}_{\text {nom }}-\mathrm{t}_{\text {galv }}=0.86 \mathrm{~mm}$
$\mathrm{f}_{\mathrm{yp}, \mathrm{d}}=\mathrm{f}_{\mathrm{yp}, \mathrm{k}} / \gamma_{\mathrm{Mo}}=350 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{u, R d}=\tau_{u, R \mathrm{R}} / \gamma_{\mathrm{vs}}=0.144 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{m}_{\mathrm{Rd}, \mathrm{s}}=6.68 \mathrm{kNm} / \mathrm{m}$
$\mathrm{e}_{\text {comb }}=\left(\mathrm{A}_{\mathrm{p}, \text { eff }} \times \mathrm{e}+\mathrm{A}_{\text {bar }} \times \mathrm{y}_{\text {bar }}\right) /\left(\mathrm{A}_{\mathrm{p}, \text { eff }}+\mathrm{A}_{\text {bar }}\right)=\mathbf{4 2 . 7} \mathrm{mm}$
$W_{\text {deck }}=\rho_{\text {deck }} \times A_{p, \text { gross }}=0.10 \mathrm{kN} / \mathrm{m}^{2}$

## SKETCH OF SLAB AND LOADS SET AT CRITICAL LOCATION

| - Tekla.Tedds <br> Steel Construction Institute | Project |  |  |  | Job no. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Calcs for |  |  |  | Start page no./Revision 5 |  |
|  | Calcs by TT | Calcs date $24 / 01 / 2024$ | Checked by | Checked date | Approved by | Approved date |



| T Tekla. Tedds <br> Steel Construction Institute | Project |  |  |  | Job no. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Calcs or |  |  |  | Start page no./Revision6 |  |
|  | Calcs by | Calcs date 24/01/2024 | Checked by | Checked date | Approved by | Approved date |

Eq. (6.10a)
Eq. (6.10b)
ULS Load

## Stiff Bearing Widths

Bearing Width Transverse to Span
Bearing Width Along Span

## Effective Widths

Effective Width Transverse to Span
Effective Width Along Span

## Concentrated Load A2

## Ultimate Limit State

Eq. (6.10a)
Eq. (6.10b)
ULS Load

## Stiff Bearing Widths

Bearing Width Transverse to Span Bearing Width Along Span

## Effective Widths

Effective Width Transverse to Span
Effective Width Along Span

$$
\begin{aligned}
& b_{\mathrm{em}}=1.266 \mathrm{~m} \\
& a_{\mathrm{em}}=0.662 \mathrm{~m}
\end{aligned}
$$

## Concentrated Load B2

## Ultimate Limit State

Eq. (6.10a)
Eq. (6.10b)
ULS Load

## Stiff Bearing Widths

Bearing Width Transverse to Span
Bearing Width Along Span

## Effective Widths

Effective Width Transverse to Span
Effective Width Along Span

## Concentrated Load B1

## Ultimate Limit State

Eq. (6.10a)
$W_{\text {conc, } 610 \mathrm{a}}=\gamma_{\mathrm{Q}} \times \psi_{0} \times \mathrm{W}_{\mathrm{B}}=5.250 \mathbf{k N}$
Eq. (6.10b)
$W_{\text {conc }, 610 \mathrm{a}}=\gamma_{\mathrm{Q}} \times \psi_{0} \times \mathrm{W}_{\mathrm{A}}=5.250 \mathbf{k N}$
$W_{\text {conc }, 610 \mathrm{~b}}=\gamma_{\mathrm{Q}} \times \mathrm{W}_{\mathrm{A}}=7.500 \mathrm{kN}$
$W_{\text {conc, ULs }}=$ MAX $\left(W_{\text {conc, ULs, } 610 a}, W_{\text {conc, ULs, } 610 b}\right)=7.500 \mathbf{k N}$
$b_{m}=0.240 \mathrm{~m}$
$a_{m}=0.240 \mathrm{~m}$
$\mathrm{b}_{\mathrm{em}}=1.402 \mathrm{~m}$
$a_{\text {em }}=0.707 \mathrm{~m}$
$W_{\text {conc }, 610 \mathrm{a}}=\gamma_{\mathrm{Q}} \times \psi_{0} \times \mathrm{W}_{\mathrm{A}}=5.250 \mathrm{kN}$
$W_{\text {conc }, 610 \mathrm{~b}}=\gamma_{\mathrm{Q}} \times \mathrm{W}_{\mathrm{A}}=\mathbf{7 . 5 0 0} \mathbf{~ k N}$
$W_{\text {conc, ULS }}=\operatorname{MAX}\left(W_{\text {conc, ULs, } 610 \mathrm{a}}, \mathrm{W}_{\text {conc, ULS, } 610 \mathrm{~b}}\right)=7.500 \mathrm{kN}$
$\mathrm{W}_{\text {conc, } 610 \mathrm{a}}=\gamma_{\mathrm{Q}} \times \psi_{0} \times \mathrm{W}_{\mathrm{B}}=5.250 \mathbf{k N}$
$W_{\text {conc }, 610 \mathrm{~b}}=\gamma_{Q} \times W_{B}=7.500 \mathbf{k N}$
$\mathrm{w}_{\text {conc, }, \text { ULs }}=\operatorname{MAX}\left(\mathrm{w}_{\text {conc,ULS, } 610 \mathrm{a}}, \mathrm{w}_{\text {conc, ULS, } 610 \mathrm{~b}}\right)=7.500 \mathrm{kN}$
$b_{m}=0.240 \mathrm{~m}$
$a_{m}=0.240 \mathrm{~m}$
$b_{\text {em }}=1.266 \mathrm{~m}$
$a_{\mathrm{em}}=0.662 \mathrm{~m}$

| Tekla.Tedds <br> Steel Construction Institute | Project |  |  |  | Job no. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Calcs for |  |  |  | Start page no./Revision 7 |  |
|  | Calcs by | $\begin{aligned} & \hline \text { Calcs date } \\ & 24 / 01 / 2024 \end{aligned}$ | Checked by | Checked date | Approved by | Approved date |

ULS Load $\quad W_{\text {conc, ULs }}=M A X\left(W_{\text {conc, ULS }, 610 a}, W_{\text {conc, ULs }, 610 b}\right)=7.500 ~ \mathbf{k N}$

## Stiff Bearing Widths

Bearing Width Transverse to Span $\quad \mathbf{b}_{\mathrm{m}}=\mathbf{0 . 2 4 0} \mathrm{m}$
Bearing Width Along Span $\mathbf{a}_{\mathrm{m}}=\mathbf{0 . 2 4 0} \mathrm{m}$

## Effective Widths

Effective Width Transverse to Span
$\mathrm{b}_{\mathrm{em}}=1.402 \mathrm{~m}$
Effective Width Along Span

$$
a_{\mathrm{em}}=0.707 \mathrm{~m}
$$

## VERTICAL SHEAR RESISTANCE

The calculation of the vertical shear resistance per metre width of the composite slab neglects any contribution from the bars in the troughs in accordance with standard practice.

Effective Depth

Width of Cross-Section in Tensile Area Area of Tensile Reinforcement

Vertical Shear Resistance
$d_{p}=h-e=106 m m$
$C_{\text {Rd, }, ~}=0.18 / \gamma_{\mathrm{c}}=0.12$
$\mathrm{k}=\operatorname{MIN}\left(1+\sqrt{ }\left((200 \times 1 \mathrm{~mm}) / d_{p}\right), 2.0\right)=2.0$
$b_{w}=\left(1 \mathrm{~m} / \mathrm{b}_{\mathrm{s}}\right) \times\left(\mathrm{b}_{\mathrm{b}}+\left(\mathrm{b}_{\mathrm{s}}-\mathrm{b}_{\mathrm{r}}\right)\right) / 2=\mathbf{4 5 0} \mathrm{mm}$
$A_{s l}=A_{p, \text { eff }}=941 \mathrm{~mm}^{2} / \mathrm{m}$
$\rho_{\mathrm{l}}=\operatorname{MIN}\left(\mathrm{A}_{\mathrm{sl}} /\left(\mathrm{b}_{\mathrm{w}} \times \mathrm{d}_{\mathrm{p}}\right) \times 1 \mathrm{~m}, 0.02\right)=0.02$
$V_{\text {min }}=0.035 \times k^{3 / 2} \times\left(f_{c k}\right)^{1 / 2}=0.495 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathbf{V}_{\mathrm{Rd}, \mathrm{c}, 1}=\left(\mathrm{C}_{\mathrm{Rd}, \mathrm{c}} \times \mathrm{k} \times\left(100 \times \rho_{\mathrm{I}} \times \mathrm{f}_{\mathrm{ck}, \mathrm{nd}}\right)^{1 / 3}\right) \times \mathrm{b}_{\mathrm{w}} \times \mathrm{d}_{\mathrm{p}}=42.0 \mathrm{kN} / \mathrm{m}$
$v_{\mathrm{Rd}, \mathrm{c}, 2}=\mathrm{v}_{\text {min }} \times \mathrm{b}_{\mathrm{w}} \times \mathrm{d}_{\mathrm{p}}=\mathbf{2 3 . 6} \mathbf{~ k N} / \mathrm{m}$
$\mathrm{V}_{\mathrm{Rd}, \mathrm{comp}}=\mathrm{MAX}\left(\mathrm{V}_{\mathrm{Rd}, \mathrm{c}, 1}, \mathrm{~V}_{\mathrm{Rd}, \mathrm{c}, 2}\right)=42.0 \mathrm{kN} / \mathrm{m}$

## LONGITUDINAL BENDING RESISTANCE

The calculation of the longitudinal bending resistance per metre width of the composite slab allows for the partial shear connection between the deck and the concrete. As a result of this, the bending resistance of the composite slab varies along the span, being minimum at the end supports and maximum at midspan, as shown in the following diagram.


## LONGITUDINAL BENDING MOMENT DIAGRAM

## LONGITML BENDING

$\qquad$

$$
\mathrm{M}_{\mathrm{Ed}, \mathrm{Lx}, \max }=16.65 \mathrm{kNm} / \mathrm{m}
$$

| 근 Tekla.Tedds <br> Steel Construction Institute | Project |  |  |  | Job no. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Calcs for |  |  |  | Start page no./Revision 8 |  |
|  | Calcs by TT | Calcs date $24 / 01 / 2024$ | Checked by | Checked date | Approved by | Approved date |

Normal Force in Mesh Reinforcement
Plastic Neutral Axis of Concrete
Above Deck
Transverse Bending Resistance

$$
F_{s}=A_{\text {mesh,single }} \times f_{y d, \text { mesh }}=109.57 \mathrm{kN} / \mathrm{m}
$$

$Z_{p l}=\min \left(d_{s}, F_{s} /\left(0.85 \times f_{c d}\right)\right)=7.7 \mathrm{~mm}$
$\mathrm{m}_{\text {Rd,comp,t }}=\mathrm{F}_{\mathrm{s}} \times\left(\mathrm{d}_{\mathrm{s}}-\mathrm{Z}_{\mathrm{pl}} / 2\right)=3.63 \mathrm{kNm} / \mathrm{m}$

Contact:
teddsmodules@steel-sci.com
Visit:
portal.steel-sci.com/shop

Also available from the SCI:

- Method for Extending Fire Test Results
- Light-Gauge Steel Member Resistance
- Composite Slab Service Openings

